Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38351357

RESUMO

Water pollutants are an emerging environmental hurdle for crop production and human health risks. In recent decades, the removal of contaminants from water using a cutting-edge approach like biosorbents is a strategy that is both cost-efficient and sustainable. For instance, since biowaste from fruit crops implies the frequent occurrence of average annual waste, it is imperative to formulate strategic initiatives to mitigate this emerging problem while simultaneously recognizing the potential for reutilization and reintroduction of such waste into the industrial sector. Fruit crops such as peels, seeds, skins, branches and stalks can be altered into biosorbents for water treatment. Partially mitigating the adverse impacts of biowaste that estimate to incur costs of billions of dollars around the world would be achieved with this engineering application. This review provides a perspective on the existing literature and brings up-to-date information and findings in the field of pomological crop waste as biosorbents for environmental remediation. In this way, we review the detrimental impact of environmental contaminants on biological organisms and different types of fruit crop waste and their utilization for wastewater treatment, with special emphasis on the formulation of biowaste sorbents (removal efficiency is > 80%) and their application for capturing pollutants such as heavy metals, organic and inorganic dyes and oils. Besides, the newly invented techniques for the characterization of fruit-based biosorbents, the parametric evaluation of biosorbents and their comparison with other available biosorbents are discussed. This review will be helpful for remediating contaminants in wastewater and a panacea for practical engineering solutions.

2.
J Appl Microbiol ; 133(6): 3252-3264, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35304937

RESUMO

AIM: Polymicrobial biofilm encasing cross-kingdom micro-organisms are apparent in medicine, which imposes serious resistance to conventional antimicrobial treatment. The objective of the study was to explore Butea monosperma seed lectin (BMSL) conjugated antimicrobial lipid, 2-((N-[2-hydroxyethyl]palmitamido)methyl)-1-methylpyridin-1-ium iodide (cN16E) to inhibit mixed-species biofilm of uropathogenic Escherichia coli-Candida albicans. METHODS AND RESULTS: Antimicrobial activity and antibiofilm of cN16E and cN16E-BMSL conjugate (BcN16E) were analysed against single- and mixed microbial cultures. The minimum inhibitory concentration (MIC) indicates that the MIC of cN16E-BMSL conjugate (BcN16E) against cohabiting UPEC-C. albicans was eightfold lower than the cN16E. BcN16E affects membrane integrity to elicit antimicrobial activity. BcN16E inhibits the dual-species biofilm even with 16 times lower MIC of cN16E. BcN16E impairs the biofilm-associated virulence factors which include extracellular polysaccharides, cell surface hydrophobicity, swimming, swarming motilities, hyphal filamentous morphology, curli formation and haemolysin activity. As a proof of concept, we demonstrated BcN16E ability to inhibit dual-species biofilm formation on a urinary catheter. CONCLUSION: The study revealed that the BcN16E is better than cN16E in impairing biofilm-associated virulence factors and exerting antimicrobial activity. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings emphasize that phytolectin has the potential to enhance the anti-virulence strategies of antimicrobials against cross-kingdom biofilm-related infections.


Assuntos
Anti-Infecciosos , Escherichia coli Uropatogênica , Candida albicans , Fatores de Virulência , Amidas , Ácidos Graxos , Biofilmes , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...